A steady-state lattice Boltzmann model for incompressible flows
نویسندگان
چکیده
منابع مشابه
Lattice Boltzmann model for incompressible flows through porous media.
In this paper a lattice Boltzmann model is proposed for isothermal incompressible flow in porous media. The key point is to include the porosity into the equilibrium distribution, and add a force term to the evolution equation to account for the linear and nonlinear drag forces of the medium (the Darcy's term and the Forcheimer's term). Through the Chapman-Enskog procedure, the generalized Navi...
متن کاملPreconditioned lattice-Boltzmann method for steady flows.
In this paper we propose a preconditioned lattice Boltzmann (LB) method for steady incompressible flows. For steady flows, the macroscopic equations derived from this LB model are equivalent to those from the standard LB model, but with an improved eigenvalue system. The proposed model can be viewed as an explicit solver for preconditioned compressible Navier-Stokes equations. Linear stability ...
متن کاملStochastic finite difference lattice Boltzmann method for steady incompressible viscous flows
With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncerta...
متن کاملApplication of the Lattice Boltzmann Method to Steady Incompressible Laminar High Re Flows
An incompressible steady-state formulation of the Lattice Boltzmann Method is applied to laminar flows for a varying range of Reynolds numbers, extending form 50 to 2000. As test cases, the channel and the lid driven cavity flow problems are considered. The effect of the model Mach number on the accuracy is also analyzed by performing computations for different Mach numbers varying within the r...
متن کاملLattice Boltzmann model for ultra-relativistic flows
F. Mohseni, ∗ M. Mendoza, † S. Succi, ‡ and H. J. Herrmann 3, § ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Schafmattstrasse 6, HIF, CH-8093 Zürich (Switzerland) Istituto per le Applicazioni del Calcolo C.N.R., Via dei Taurini, 19 00185, Rome (Italy), and Freiburg Institute for Advanced Studies, Albertstrasse, 19, D-79104, Freiburg, (Germany) D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.12.078